
Network-aware Mobile Programs
�

M.Ranganathan, Anurag Acharya, Shamik D. Sharma and Joel Saltz
Department of Comptuer Science

University of Maryland
College Park, MD 20740

Abstract

In this paper, we investigate network-aware mobile pro-
grams, programs that can use mobility as a tool to adapt
to variations in network characteristics. We present infras-
tructural support for mobility and network monitoring and
show how adaptalk, a Java-based mobile Internet chat
application can take advantage of this support to dynami-
cally place the chat server so as to minimize response time.
Our conclusion was that on-line network monitoring and
adaptive placement of shared data-structures can signifi-
cantly improve performance of distributed applications on
the Internet.

1 Introduction

A mobile program can move code, data or an active
thread of control from site to site in a distributed environ-
ment. This flexibility has many potential advantages. For
example, a program that searches distributed data repos-
itories can improve its performance by migrating to the
repositories and performing the search on-site instead of
fetching all the data to its current location. Similarly, an in-
ternet video-conferencing application can minimize overall
response time by positioning its server based on the loca-
tion of its users. The primary advantage of mobility in
these scenarios is that it can be used as a tool to adapt
to variations in the operating environment. Applications
can use online information about their operating environ-
ment and knowledge of their own resource requirements
to make judicious decisions about placement of code, data
and threads of control.

In this paper, we investigate network-aware mobile pro-
grams, i.e. programs that can postion their computational
elements and data structures based on their knowledge of
network characteristics so as to improve their performance.
In particular we investigate what policies are suitable for
making mobility decision ? Second, is the variation in
�
This research was supported by ARPA under contract #F19628-94-

C-0057, Syracuse subcontract #353-1427

network characteristics such that adapting to them proves
profitable. Finally, can adequate network information be
proveded to mobile applications at an acceptable cost.

In order to adapt to network variations, mobile programs
must be able to decide when to move, what to move and
where to move. There are three types of network variations
which may be cause for migration: (1) population vari-
ations, which represent changes in the distribution of users
on the network, as sites join or leave an ongoing distributed
computation; (2) spatial variations, i.e. stable dif-
ferences between in the quality of different links, which
are primarily due the host’s connectivity to the internet;
and (3) temporal variations, i.e. changes in the qual-
ity of a link over a period of time, which are presumably
caused by changes in cross-traffic patterns and end-point
loads. Spatial variations can be handled by a one-time
placement based on the information available at the begin-
ning of a run. Adapting to temporal and population vari-
ations requires dynamic placement which needs a periodic
cost-benefit analysis of current and alternative placements
of computation and objects. Dynamic placement decisions
have two partially conflicting goals: maximize the perfor-
mance improvement from mobility and minimize the cost
of mobility. If an opportunity for improving performance
presents itself, it should be capitalized upon; however, re-
acting too rapidly to changes in the network characteristics
can lead to performance degradation as the performance
gain may not offset the mobility cost.

We investigate these issues in the context of Sumatra,
an extension of the

������� 1 programming environment [10]
that provides a flexible substrate for adaptive mobile pro-
grams. Since, mobile programs are scarce, we developed
our own mobile internet chat server. This application,
called adaptalk, monitors the latencies between all par-
ticipants and locates the chat server so as to minimize the
maximum response time. We selected this application since
it is highly interactive and requires fine-grain communica-
tion. If such an application is able to take advantage of
information about network characteristics, we expect that

1Java is a registered trademark of Sun Microsystems

many other distributed applications over the internet would
be similarly successful. The resource that governs the mi-
gration decisions of adaptalk is network latency. To
provide latency information, we have developed Komodo,
a distributed network latency monitor.

To evaluate if mobile applications can take advantage
of network-awareness, we examined the performance of
adaptalkwith and without mobility. Our evaluation had
two main goals: (1) to determine the performance ben-
efits, if any, of network-aware placement of the central
chat server over a network-oblivious placement; and (2) to
determine if dynamic placement based on online network
monitoring provides significant performance gains over a
one-time placement based on initial information. Our re-
sults are encouraging - they indicate that on-line monitoring
and dynamic placement can significantly improve perfor-
mance of distributed applications on the Internet.

This paper is a first step in demonstrating that distributed
programs can use mobility as a tool to adapt to variations
in their operating environment. The main contribution of
this work is that it shows the feasibility and profitability of
this approach. We establish feasibility by providing a pro-
gramming interface and efficient system support for thread
and object migration in Sumatra. Our experiments with
Komodo and adaptalk indicate that network-aware pro-
grams can successfully use mobility to adapt to spatial and
temporal variations in network latency over the internet.

The paper is organized as follows. Section 2 describes
Sumatra and the programming model that it provides. Sec-
tion 3 describes the design and implementation of Komodo.
Section 4 describes the adaptalk application and the
policy it uses to make mobility decisions. Section 5 de-
scribes our experiments and presents the results. Section 6
discusses the results and their implications. Section 7 de-
scribes related work and Section 8 provides our conclusions
and plans for future work.

2 Sumatra: a Java that walks

Sumatra is an extension of the Java programming envi-
ronment that supports adaptive mobile programs. Platform-
independence was the primary rationale for choosing Java
as the base for our effort. In the design of Sumatra, we
have not altered the Java language. Sumatra can run all
legal Java programs without modification. All added func-
tionality was provided by extending the Java class library
and by modifying the Java interpreter without affecting the
virtual machine interface.

Our design philosophy for Sumatra was to provide the
mechanisms to build adaptive mobile programs. Policy de-
cisions concerning when, where and what move are left to

the application. The main feature that distinguishes Suma-
tra from previous systems [3, 6, 24, 13] that support mobile
programs is that all communication and migration happens
under application control. Furthermore, combination of
distributed objects and thread migration allows applica-
tions the flexibility to dynamically choose between moving
either data or computation. The high degree of application
control allows us to easily explore different policy alterna-
tives for resource monitoring and for adapting to variations
in resources. We believe that the space of design choices
for adaptive mobile programs is yet to be mapped out and
such flexibility is important to help explore this space.

Sumatra adds two programming abstractions to Java:
object-groups and execution engines. An object-group is a
dynamically created group of objects. Objects can be added
to or removed from existing object-groups. All objects
within an object-group are treated as a unit for mobility-
related operations. This allows the programmer to cus-
tomize the granularity of movement and to amortize the cost
of moving and tracking individual objects. This is partic-
ularly important in languages like Java because every data
structure is an object and moving the state, one object at a
time, can be prohibitively expensive. An execution-engine
is the abstraction of a location in a distributed environment.
In concrete terms, it corresponds to an interpreter executing
on a host. Sumatra allows object-groups to be moved be-
tween execution-engines. An execution-engine may also
host an active thread of control. Currently, the implemen-
tation does not support multi-threaded mobile programs.
Threads can move between execution-engines.

The principal new operations provided by Sumatra are:

Object Migration: Objects on the heap can be checked
into or out of an object group at application request. Object
groups may be moved between engines. During motion,
objects in the object group are automatically marshalled us-
ing type-information stored in their class templates. When
an object-group is moved, all local references to objects
included in the group (stack references and references from
other objects) are converted into proxy references where
the new location of the object is recorded. Some objects,
such as I/O objects, are tightly bound to local resources and
cannot be moved. References to such objects are reset and
must be reinitialized at the new site. Theclass template (and
associated bytecode) for an object can be downloaded into
an execution-engine on application request. Downloaded
class-templates are cached; theClassLoader checks this
cache before checking the local file system.

Remote Method Invocation: Method invocations on
proxy objects are transparently translated into calls at the
remote site. Type information stored in class-templates is
used to achieve RPC functionality without a stub compiler.

Exceptions, generated at the called site are forwarded to the
caller. If an object is shared between threads on different
engines, it is possible that the object can move without
the knowledge of one or more engines. In such cases,
sending a remote method invocation to the expected site of
the object returns an object-moved exception along with a
new forwarding address to caller. The caller can handle the
exception as it deems fit (e.g., re-issue the request, migrate
to the forwarded location, raise a further exception and so
on).

Thread migration: Sumatra allows explicit thread migra-
tion using a engine.go() function that bundles up the
stack and the program counter and restarts execution at the
specified execution-engine. To automatically marshal the
stack, the Sumatra interpreter maintains a type stack, par-
allel to the value stack, which keeps track of the types of
all variables on the stack. When a thread migrates, Suma-
tra transports with it, all objects that are referenced by the
stack but are not a part of any object-group. All stack refer-
ences to objects that are left behind (i.e were part of some
object-group) are converted to references to proxy objects.
After migration, many of the proxy references on the stack
may actually refer to objects that are on the destination site;
these references are converted to local references before the
call to go returns.

Remote execution: A new thread of control can be created
by rexec’ing the main method of a class existing on a re-
mote engine. The arguments for the invocation are copied
and moved to the remote site. Unlike remote method in-
vocation, remote execution is non-blocking; the calling
thread resumes immediately after the main method call is
sent to the remote engine. Currently, Sumatra imposes the
restriction that concurrent threads must execute on differ-
ent engines. Concurrent threads communicate using calls
to shared objects. The thread initiating a remote execu-
tion can share objects with the new thread by passing it
references to these objects as arguments to main.

Thread migration allows movement of control at arbi-
trary points in the execution. For example, a remote method
invocation may migrate based on some data or environment
dependent condition - thereby causing the control to return
from a location different from the original target of the
remote invocation.

Remote Signal Handlers: Sumatra allows the user to
write a signal handler in Java. This allows remote sig-
nal handlers to be installed. Signal handlers are a simple
method of implementing "up-calls". For example, a server
that produces periodic data may place the data in some
"well known" location and signal the engine in which a
signal handler is installed. The signal handler may then
pick up the data from the well known location.

2.1 Example

Say we want to look through a database of X-ray images
stored at a remote site and apply a quick selection algo-
rithm to extract "interesting" lung images. These images
are then subjected to a more compute-intensive cancer-
detection process. One way to write the program would
be to download all images from the image server and do
all the processing locally. This may cause long delays due
to the network traffic involved. Another approach would
be to send the selection procedure to the site of the image
database. Only "interesting" images would be sent back to
the main program, greatly reducing network requirements.
A third, and even more flexible approach would allow the
shipped selection procedure to extract all the interesting
images from the database but return only the size of the
extracted images to the main program. If the size is still too
big, the program may choose to move itself to the database
site and perform the cancer-detection computation there
rather than downloading all the data - thereby avoiding the
network bottleneck while paying the cost of slower process-
ing at the server. On the other hand if the size is small, the
data can be shipped over and processed locally with a faster
native method. The code in Figure 1 shows this adaptive
version of the code. This program makes its decision to
migrate in a rudimentary fashion; a more realistic version
of this application would also take network bandwidth and
the relative processing power available on both machines
into account for migration decisions.

We next describe a distributed monitor that allows net-
work latency information to be gathered by Sumatra ap-
plications in order to make mobility decisions.

3 Komodo: a distributed network latency
monitor

Komodo2 is a distributed network latency monitor. The
design principles of Komodo are: low-cost active mon-
itoring and fault-tolerance. Active monitoring uses sepa-
rate messages for monitoring, passive monitoring generates
no new messages and piggybacks monitoring information
on existing messages. An active monitoring approach is
needed for adaptalk (described in the next section) as
passive monitoring cannot provide information about links
that are not used in the current placement but could be used
in alternative placements. It is our working hypothesis that
effective mobility decisions can be based on medium-term
(30sec-few minutes) and long-term (hours) variations. At
these resolutions, we believe that active monitoring can be

2Komodo dragons are a species of monitor lizards found on the island
of Komodo which is close to both Java and Sumatra.

.....
lung object = new Lung();
myengine = System.rpc.myEngine();

// Create a engine at the xray database site.
remote engine = new Engine("xrays.gov");
// Send the lung class-template to the remote engine
remote engine.downloadClass("Lung");
// Create a new object group.
objgroup = new ObjGroup("lung group");
// Add the lung object to the object group
objgroup.checkIn(lung object);
// Move the object group to the database site
objgroup.moveTo(remote engine);

// a remote method call selects interesting xrays
size = lung object.query(db,"BigLungs");

// Are there too many images to bring over?
if (size > too many images) �

// Migrate thread, process images and return.
remote engine.go();
result = lung object.detect cancer();
myengine.go();	
else �

// there are only a few interesting xrays. Fetch them
// and process locally, using a faster native method.
objgroup.moveTo(myengine);
result = lung object.n detect cancer();	

// display result locally
System.display(result);

Figure 1: Excerpt of a Sumatra program that adaptively migrates to reduce its network bandwidth requirements

achieved at an acceptable cost. This section briefly de-
scribes the design and implementation of Komodo.

Komodo allows applications to initiate monitoring of
network latency between any pair of hosts running the
monitor. The application need not be resident on one of
the hosts in the host-pair being monitored. Komodo is im-
plemented as a user-level daemon that runs on every host.
Applications pass monitoring requests to their local Ko-
modo daemon. If the requested link includes the current
host, the local daemon handles the request. Otherwise, it
forwards the request to the daemon on the appropriate host.
Each daemon monitors the UDP-level latency on a network
link for which it has received monitoring requests, by send-
ing a 32-byte UDP packet to the daemon on the other end
of the link of interest. If an echo is not received within
an expected interval, (the maximum of the ping period or
five times the current round trip time estimate) the packet
is retransmitted. Using UDP for communication may, oc-
casionally, lead to loss of messages. Message loss can
lead only to a short-term loss of efficiency. As we expect
monitoring requirements to be coarse-grained, the effect of
packet loss should be small.

Applications that initiate a monitoring request can con-
trol the frequency with which Komodo pings the specified
link to a maximum upper bound. Applications need to re-
fresh requests periodically to keep them alive; otherwise,
Komodo drops the request after a specified period of time.

The latency measures acquired by Komodo are passed
through a filter before being provided to the applications.
This filter eliminates singleton impulses as well as noise
within a jitter threshold (we use a jitter threshold of 10ms,
which is the resolution of most Unix timers). If the measure

changes rapidly, a moving window average is generated.
Thefilter produces a stepwise constant output which reflects
the average trend of the ping measurements. This filter was
designed on the basis of our study of a large number of
internet latency traces (see Section 5.1) which revealed that:
(1) there is a lot of short-term jitter in the latency measures
but in most cases, the jitter is small; (2) there are occasional
jumps in latency that appear only for a single ping; (3) for
some traces, the latency measure fluctuates rapidly; (4) the
rtt measures show an "approximately stepwise" behavior
- that is a definite trend (median value within a window)
which has abrupt jumps. Similar observations have been
made by others [5]. Figure 2(a) illustrates the operation of
the filter.

Each daemon maintains a cache of current latency esti-
mates for all its currently active monitoring requests. This
cache is maintained in a well-known shared memory seg-
ment and can be efficiently read by all Sumatra applications
executing on the same machine. Cooperating Komodo dae-
mons forward latency information in response to persistent
remote requests. A latency estimate for a request received
from another host is forwarded only when a new filtered
estimate (different from the previous filtered estimate) is
generated and is piggy-backed onto a ping reply if possi-
ble.

To address concerns about the cost of active monitoring,
we measured the CPU utilization of Komodo for varying
number of links. We determined that that the maximum
CPU utilization for up to eight links is less than 0.4 %. The
amount of data transferred is 256 bytes per second. Also,
for up to eight links, the CPU utilization scales linearly.
By extrapolation, the load for 20 hosts would be 1% CPU

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

R
o
u
n
d
-t

ri
p
 t
im

e
 (

m
s
)

Time (seconds)

Original
Filtered

 1 2 4 8�
Number of links monitored

0.0

0.1

0.2

0.3

0.4

0.5

C
P

U
 O

v
er

h
ea

d
 (

%
)

�

(a) Operation of the Komodo filter (b) CPU utilization of Komodo

Figure 2: (a) The input to the filter is a 10-minute trace of one-per-second latency measures between
baekdoo.cs.umd.edu and lanl.gov. Note that the four single-ping impulses towards the right end have been
eliminated. (b) The CPU utilization is computed by dividing the (user+system) time by the total running time. Each
experiment was run for 1000 seconds with one ping per second for all links.

utilization and 640 bytes/sec data transfer.3 Further details
about Komodo are presented in [23].

4 Adaptalk: An adaptive internet chat ap-
plication

Adaptalk is a relatively simple network chat applica-
tion built using Sumatra and Komodo. It allows multiple
users to have an online conversation; new participants can
join an ongoing conversation at any point; multiple in-
dependent conversations can be held. To ensure that all
participants see the same conversation and that new partic-
ipants can join ongoing conversations, a central server is
used to serialize and broadcast the contributions.

Adaptalk has been divided into three components:
handling keyboard events,managing the chat screenand co-
ordinating the communication between participants. Each
component is implemented by a separate object-group.
Each host participating in the conversation runs two
execution-engines, one houses the screen object-group
and the other houses the keyboard object-group. The
central server is implemented as a separate shared object-
group, msgboard, which can (and does) move between

3This assumes that the linear scaling holds; given the low utilization
there is no reason to believe that it would not.

hosts participating in the conversation, positioning itself
within the engine that houses the screen on its cur-
rent host. Each message issued by a participant starts
from a keyboard which invokes a remote method on
the msgboard. The msgboard serializes incoming mes-
sages and issues a succession of remote-execution requests,
one per participant, that updates the screens on all par-
ticipants. In this case, remote execution is preferred to
remote method invocation as there is no useful return value
and remote execution allows fast one-way communication.

Individual messages in adaptalk, and other chat ap-
plications, consist of single lines of characters, usually no
more than 50-60 characters. The goal of a chat application
is to provide a short response-time to all participants so that
a conversation canmakequick progress. The response-time
for a particular participant depends on the latency between
it and the central server. Given the latencies of all the links,
the primary knob that adaptalk can turn, to maintain a
low response-time for all participants, is the position of the
central server.

4.1 Mobility policy

There are two main features of the adaptalk mobil-
ity policy. (1) continuous tracking of the instantaneously
most-suitable-site and (2) deferral of server-motion till the
potential for a significant and stable performance advan-

tage has been seen. The first feature allows it to quickly
take advantage of opportunities for optimization; the sec-
onds helps ensure the gain is greater than the cost. The goal
of adaptalk is to minimize the maximum response-time
seen by any participant. The migration policy of adaptalk
tries to minimize this cost function.

As mentioned in the previous section, the goal of
adaptalk is to minimize the maximum response-time
seen by any participant. The suitability of a machine as the
location of central server is characterized by the maximum
over the network latency measures for all participants. The
machine that achieves the lowest measure is designated the
most-suitable-site.

We expect three types of variations in the network
characteristics which may be cause for migration: (1)
population variations, which represent changes in the
distribution of users on the network, as participants join
or leave an ongoing conversation and their machines be-
come available (or unavailable) as potential locations to
place msgboard; (2) spatial variations, i.e. stable
differences between latencies of different links; and (3)
temporal variations, i.e. changes in the latency of a link
over a period of time.
Adaptalk’s migration policy, shown in pseudo-code

in Figure 3, can adapt to all three types of variations. This
algorithm is run at the location that hosts the msgboard
each time a message is posted. The algorithm runs as part
of the post msg method at the msgboard.

A new site for the central server is selected whenever:
(1) one of the sites that does not currently host the server
receives more than a threshold score; or (2) the current
site receives a very low socre over a threshold number.
The first condition is used to move the server to locations
that consistently promise better performance; the second
condition is used to quickly move away from locations that
provide poor performance.

A count in maintained for each host where msgboard
may be housed. This count is initialized to 0 and is cleared
when a participant enters or leaves the conversation. Con-
sider the case with a fixed number of participants with
significant spatial variation in network latency and little
temporal variation. In this case, the migration algorithm
rapidly recognizes the best location for the msgboard,
but waits until this choice has been ratified over some pe-
riod of time (count > win threshold) before mov-
ing msgboard. As shown in Section 5, this policy al-
lows adaptalk to effectively insure itself against poor
initial placement of the msgboard. Once a good lo-
cation has been found, the msgboard does not move,
unless temporal variations or changes in population distri-
bution cause another node to become a substantially bet-
ter location (i.e. count[w] > win threshold) or

the current host to become a substantially bad choice (i.e.
count[curr engine] < loss threshold). In
such cases, the msgboardwill move during the conversa-
tion. After initial experiments with adaptalk, we set the
win threshold to be 25
�� , the loss threshold
to be 12
�� and the decision cycle to be 50
�� .
Here, � is the number of participants. The length of the
decision cycle was set large enough to amortize the
cost of movement in cases where large temporal variations
or fluctuations in population distribution cause frequent
repositioning.

........
Get the all to all latency map from Komodo;
Find the site s that would minimize the max

latency for messages posted to msgboard;
count[s] = count[s] + 1; rounds++;
let w be the site with the largest count;
let curr_engine be the engine which

currently houses msgboard;
// Found a clear cut winner.
if (count[w] > win_threshold) return w;
else if (rounds % decision_cycle == 0) {
// Is the current engine a bad looser ?
if (count[curr_engine] > loss_threshold) {

clear count for each host;
return curr_engine;

} else {
// Current engine is a bad looser.
let new_host be the host with the

maximum count;
clear count for each host;
return new_host;

}
} else return null; // cycle not yet over.

Figure 3: Decision Algorithm for msgboard placement
used in Adaptalk. This algorithm is run at the location
where the msgboard resides each time a message is posted.

5 Evaluation

To evaluate the performance impact of network-aware
adaptation on the Internet, we performed two sets of exper-
iments. First, we monitored round-trip times for 32-byte
ICMP packets sent to a large set of hosts over several days.
The goal of these experiments was to study the spatial and
temporal variation in network latency on the Internet. Re-
sults from this study are presented in section 5.1.

Second, we measured the performance of three versions
of adaptalk over long-haul networks, using traces col-
lected during the internet study. Our evaluation had two
main goals: (1) to determine if network-aware placement

of components of an application distributed over multiple
hosts on the Internet provides significant performance gains
over a network-oblivious placement; and (2) to determine
if dynamic placement based on online network monitor-
ing provides significant performance gains over a one-time
placement based on initial information. Results from this
study are presented in section 5.3.

5.1 Variations in Internet latency

We selected 45 hosts: 15 popular .com web-sites (US),
15 popular .edu web sites (US) and 15 well-known hosts
around the world. These host were pinged from four dif-
ferent locations in the US. The study was conducted over
several weekdays, each host-pair being monitored for at
least 48 hours. We used the commonly available ping
program and sent one ping per second. This resolution
was acceptable as our goal was to discover medium-term
(30sec/minutes) and long-term (hours) variations.

The conclusions of our study, briefly, are: (1) there is
large spatial variation in internet latency (the per-hour mean
latency varied between 15 ms and 863 ms for US hosts and
between 84 ms and 4000 ms for non-US hosts); (2) there is
a large and stable variation in the latency of a single host-
pair over the period of a day (maximum daily variation in
per-hour mean latency for US hosts was 550 ms and for
non-US hosts was 5750 ms); (3) There is a lot of jitter in
the latency measures but in most cases, the jitter is small.
(4) There are isolated peaks in latency that appear only for
a single time interval.

5.2 Experimental Setup

Having established that there are significant spatial and
temporal variations in network latency on the internet, we
examined how well adaptalk could adapt to these vari-
ations.

To simulate the characteristics of long-haul networks,
we decided to run our experiments over a low-latency
LAN and delay all packets based on the ICMP ping
traces described above (see Figure 4 (a)). This ap-
proach also allowed us to perform repeatable experi-
ments. To ensure that delaying packets, instead of us-
ing a real network, does not skew the latency measures,
we performed a simple test. Free-running Komodo mon-
itors were installed at bookworm.cs.umd.edu and
jarlsberg.cs.wisc.edu and were used to collect
UDP latency measures between this host-pair. In paral-
lel, a trace of ICMP ping times between these two hosts
over the same period (5000 sec) was collected. This trace
was later fed into trace-driven Komodo monitors running
on two hosts on our LAN. The latency measures reported
by the trace-driven monitors matched quite well with the

actual latency measures reported by free-running monitors.
The average of the actual latency measures was 128 ms
(std dev = 64); the average of the values reported by the
trace-driven monitors was 144 ms (std dev = 68).

We performed all our experiments on four Solaris ma-
chines on our LAN. We picked six trace-segments from
the internet study and used them to delay packets be-
tween the machines. All these segments were over the
noon-2pm EDT period.4 These traces were selected to ap-
proximate the network latency spectrum observed in the
internet study. Hosts participating in the selected traces
include: java.sun.com, home.netscape.com,
www.opentext.com, cesdis.gsfc.nasa.gov,
www.monash.edu.au and www.ac.il. This setup
makes the four local machines behave like four far-flung
machines on the internet. Figure 4 (b) shows the configu-
ration used for the experiments.

5.3 Experiments

We performed a series of experiments to evaluate the
benefits of adapting to population variation, spatial vari-
ation and temporal variation. The experiments consisted
of running three different versions of the chat server. The
first version, called static, had no migration support and
no network-awareness. The location of the msgboard
was chosen in a network-oblivious fashion. The second
version was a stripped-down version of adaptalk, called
one-shot. It used network information from Komodo to
find the best initial placement for the msgboard, and used
mobility support to move it there. After initial placement,
migration decisions and network-awareness were turned
off. The third version, called dynamic was the full-fledged
adaptalk, as described in section 4. It used on-line mon-
itoring and dynamic placement to position the msgboard.

The performance of static depends on the location of
the msgboard. If static chooses the same location as one-
shot, both would have the same performance. On the other
hand, since static is network-oblivious, it is just as likely to
place the msgboard at the worst possible location. As the
performance of one-shot already presents a rough upper-
bound of static’s performance, we deliberately chose the
worst initial placement when running static.

Adaptation to Population Variation: To evaluate the ef-
fect of changing user distribution we used the following
workload: A conversation was initiated between hosts C
and D. Host B joins the conversation after 15 minutes, and
host A joins after another 15 minutes. Each host sends a
sequence of 70-character sentences with a 5-second think
time between sentences. With only two hosts initiating the

412 noon is the beginning of the daily latency peak for US networks
and the end of the daily latency peak for many non-US networks.

Sumatra Komodo

Packet delay

Network

Adaptalk
�

ICMP ping trace

Latency Cache
106

104

715

305

A B

CD

311

103

(a) Organization on each host (b) Avg. Latency (in ms) between hosts

Figure 4: Experimental Setup. Four local machines on a LAN were used to simulate four remote machines on the Internet
by adding delays to packets. ICMP ping traces between real Internet hosts were used to generate the delays, so as to capture
real-life temporal variations in latencies.

conversation, there is no difference between the best and
worst initial placement for the msgboard and both the
static and one-shot versions perform identically (both place
the msgboard on host D). Figure 5 (a) plots the maxi-
mum latency over all hosts for the one-shot version. Note
that even after new hosts join the conversation there is no
noticeable difference in maximum latency. In contrast, the
dynamic version adapts to the changing population work-
load. Soon after host B joins the conversation, the adaptive
placement policy moves the msgboard there, causing a
drop in the maximum latency. After host A joins the con-
versation, the msgboard moves between hosts A and B
in response to temporal fluctuations. This can be seen from
the variation in latency for host B in Figure 5 (b). These
movements help keep the maximum latency steady even in
the presence of temporal fluctuations.

Adaptation to Temporal and Spatial Variation: In this
case the client population is assumed to be stable. The
workload consists of all 4 hosts jointly initiating a conver-
sation which runs for 75 minutes. As before, each host
generates a new sentence every 5 seconds. In this case, the
network-oblivious (static) version places the chat server on
host D. The network-aware (one-shot) version uses latency
information provided by Komodo to determine that host B
is a much better placement. For the dynamic version, initial
placement is less important as it should be able to recover
from a bad initial placement. For this version, we place the
msgboard at host D, the worst-possible location.

To avoid clutter, Figure 6 shows the performance of
these three versions in two different graphs. Figure 6 (a)
compares the maximum latency (over all participants) for
the dynamic and static versions. As seen from the sharp
drop on the left end of the graph, the dynamic version is

successfully able to move the msgboard away from its
bad initial placement to more suitable location. Figure 6 (b)
compares the average maximum latency (over all partici-
pants) for the dynamic and one-shot versions. It shows
that once the dynamic version moves the server to a more
suitable location, the performance of the two versions is
largely equivalent. This implies that adapting to short-term
temporal variations in a steady population workload does
not provide much performance advantage over one-shot
network-aware placement. It may, however, still be ad-
vantageous to adapt to long-term temporal variations. We
note that at the far right of graph Figure 6 (b), temporal
variation in the link latencies do allow the dynamic version
to do better than the one-shot version.

6 Discussion

In the introduction, we had raised three questions with
respect to network-aware mobility. First, how should pro-
grams be structured to utilize mobility to adapt to varia-
tions in network characteristics? Second, is the variation in
network characteristics such that adapting to them proves
profitable? Finally, can adequate network information be
provided to mobile applications at an acceptable cost?

Our experience with Sumatra and adaptalk provides
some early insights about application structure suitable for
adaptive mobile programs. First, the migration policy
should be cheap so that applications don’t have to analyze
the tradeoffs of the migration decision itself. An easy-to-
compute policy allows frequent decisions and rapid adap-
tation to changes in the environment. We believe that an
easy-to-compute migration policy was key to adaptalk’s
ability to quickly find good locations for the chat server.

0

200

400

600

800

1000

1200

1400

500 1000 1500 2000 2500 3000 3500 4000

L
a
te

n
c
y
 (

m
s
)

�

Time (sec)

One-shot
Dynamic

0

100

200

300

400

500

600

700

800

900

500 1000 1500 2000 2500 3000 3500 4000 4500
L
a
te

n
c
y
 (

m
s
)

�

Time (sec)

Host D
Host B

(a) one-shot vs. dynamic for population variation. (b) Latency variations for hosts B and D
Max latency (over all participants) vs time. Jumps signify movement of the server.

Figure 5: Adaptiation to Population variation. Hosts C and D initiate the conversation. Host B joins after 900 seconds and
host A joins after 1800 seconds. The one-shot version places the chat server at host D. The dynamic version migrates the
server when new hosts join.

Second, good modularization helps an application take ad-
vantage of mobility. Modularization is important for all
distributed applications but it is more so for mobile pro-
grams as they have to make online decisions about the
placements of different components. An important ques-
tion that needs further investigation is where to place the
control for the mobility decisions (ie. should the logic for
the mobility decisions be placed along with the object that
moves or is central control adequate.)

To answer the second question, we evaluated the prof-
itability of adapting to changes in the user-distribution as
well as spatial and temporal variations in network latency.
Adapting to changes in user-distribution led to significant
gains allowing adaptalk to find better placements as
more users came online. Support for mobility allows appli-
cations built around a central data-structure to recover from
a poor initial placement of this structure by repositioning it
to a more suitable location. Adapting to temporal variations
alone did not not lead to significant benefits over the period
of an hour and a half. In light of this experience, we expect
that a simpler migration policy for adaptalk for short
periods would consider migration only when users join or
leave the conversation, rather than on every message as is
currently done. Since long-term variation of latency could
as large as 550 ms (US hosts) and 5750 ms (non-US-hosts),
longer conversations could still benefit from adapting to

temporal variations.
Our experiments with Komodo illustrate that cheap ac-

tive monitoring can provide network information that can
be profitably exploited. Though it would be best to use
Komodo as a stand-alone system supplying network infor-
mation to many distributed applications, its cost is so low
that one can contemplate rolling Komodo into individual
applications such as adaptalk without overloading the
network. Active monitoring was needed for adaptalk as
it needed information about links that arenot used in the cur-
rent placement but could be used in alternative placements.
Active monitoring, as implemented in Komodo, will not
be as cheap for applications that are bandwidth-sensitive
and not latency-sensitive. We are currently investigating
methods to cheaply estimate Internet bandwidth.

Finally, we would like to argue the need for mobility
as an adaptation mechanism. An alternative adaptation
mechanism, which places replicated servers at all suitable
points in the network, could adapt to spatial, temporal and
population variation by handing off conversations between
servers and by using dynamically created hierarchies of
servers. It is quite likely that for any particular application,
such a strategy would be able to achieve the performance
achieved by programs that use program mobility as the
adaptation tool. The advantage of mobility-based strate-
gies is that it allows small groups of users to rapidly set up

200

400

600

800

1000

1200

1400

1600

1800

500 1000 1500 2000 2500 3000 3500 4000 4500

L
a
te

n
c
y
 (

m
s
)

�

Time (sec)

Static placement
Dynamic placement

200

400

600

800

1000

1200

1400

500 1000 1500 2000 2500 3000 3500 4000 4500
L
a
te

n
c
y
 (

m
s
)

�

Time (sec)

One-shot placement
Dynamic placement

(a) Dynamic vs static placement (b) Dynamic vs one-shot placement

Figure 6: Maximum latency (over all participants) vs time in adaptalk. The one-shot and static worst placement are
computed based on latency information available when the conversation is initiated. The population of talkers is constant.

private communities on-demand without requiring exten-
sive server placement. This is facilitated by the fact that
mobility-based strategies can automatically determine and
utilize suitable server locations.

7 Related work

The idea of moving code, objects and processes around
a distributed system to achieve better performance and uti-
lization is not new. There are several distinct classes of
systems that support mobility. A rough classification may
be (1) systems that support remote evaluation; (2) systems
that support passive object migration; (3) systems that sup-
port active thread migration; and (4) systems that support
a combination of these features.

Remote evaluation (or code shipping) has been sup-
ported by several systems - for example Java [10],
REV [17], REXDC [4] NCL [15] and the UNIX rsh fa-
cility and Avalon/Common Lisp [25].

Movement of passive objects (ie. data) is supported
by Java Object Serialization [1] and Modula 3 Network
Objects [2].

Several systems have been built which permit an execut-
ing program to move while it is in execution 5 - for example
Obliq [3], Agent TCL [24], Emerald [16], Telescript [12]

5These systems are also called Mobile Agents or Itinerant Agents in
the literature

and TACOMA [14]. We examine some of these systems
below.

Process migration is similar to mobile programs. The
difference is that process migration moves the entire exe-
cution image of a process in execution. This complicates
matters - especially for I/O objects [8] and kernel state. Pro-
cess migration has been used in homogeneous networks of
workstations to provide better performance, utilization and
load distribution [7, 8, 20, 26]

Several distributed object systems that support mobility
have been built. Our system design has been most influ-
enced by Emerald, Obliq and Telescript which we describe
briefly below.

Emerald [16] is an object-based language and system de-
signed for the construction of distributed programs. Emer-
ald supports a "pure" object oriented model. An explicit
goal of Emerald is support for object mobility. Objects
in Emerald can freely move within the system to take
advantage of distribution and dynamically changing en-
vironments. Emerald objects can be active (ie. having an
associated process) or passive. Emerald provides fast ac-
cess to local objects by avoiding indirection. Such objects
are immobile. Mobile objects are accessed through one
extra level of indirection and hence are slower to access.
These are known as Global objects. In contrast all objects
are "Global" objects in Sumatra. Emerald supports object
groups and different models of passing parameters to re-
mote method invocations. Emerald runs on a homogeneous
network of workstations.

Obliq [3] is an object-oriented system that is based on
Modula-3 network objects [2]. Obliq supports enforces
adherence to static scoping in a distributed environment and
the provides transmission of closures and objects. Objects
in Obliq don’t move from a site. However, the state of an
object can be cloned and transmitted to another site.

Telescript [12] is a commercially available agent system.
It supports the notion of agents, places and Engines. An
agent is a mobile program. A place is a physical location.
An Engine is an interpreter in an infinite loop (as in Suma-
tra). Agents migrate from engine to engine by using a "go"
instruction. Telescript provides an authority based identifi-
cation and authentication model. An authority defines the
identity of the agent. Agents and places may discern but
not falsify authorities. Agents are allocated permits when
they arrive at a place. A permit defines what the agent
may do at the place. It may define restrictions on resource
usage, whether the agent may create other agents etc. An
agent that exceeds its allocated allowance of resources is
destroyed. An agent may impose temporary restrictions on
its own resource usage. The system then notifies it when
these temporary restrictions are reached. Agents may meet
at pre-arranged meeting places and exchange information.
Telescript does not support remote references. We have not
as yet addressed the problems of resource containment and
security in Sumatra.

The TACOMA system [14] defines an execution model
where agents can migrate from site to site and rendezvous
with each other. Data is packaged and placed into folders
which agents carry from site to site. Agents may exchange
folders when they rendezvous. Agents carry briefcases
which are collections of folders. folders may contain state
information which is unpacked at the destination and al-
lows the agent to continue execution. Agents exchange
information by meeting each other at rendezvous sites and
exchanging folders. TACOMA implements a rear guard
agent to deal with site failures. The TACOMA notion of
folders is similar to the notion of ObjectGroup in Sumatra.
Agents pay for services using electronic cash units. We
have not addressed the problem of payment for services in
Sumatra.

Agent TCL [24] is a TCL based agent system which
provides state mobility. Communication between agents
in Agent TCL happens through explicit message passing
(send and receive). The system supports security by public
key encryption methods.

In addition to these systems that support mobility, a
number of distributed programming systems have been de-
veloped to ease the task of developing communicating pro-
grams. Bal,Stienter and Tanenbaum give a survey of these
systems [11].

While the design of Sumatra was influenced by several

other systems such as Emerald, Obliq and Telescript, Suma-
tra differs from these systems in a few respects. The most
significant difference is that data movement is under appli-
cation control. There is no automatic motion of objects.
For example when an application accesses public members
of a class that is not local, an IllegalAccess exception is
generated. The application may then react by moving the
execution to the Engine where the remote object resides or
move the remote object to the location where the applica-
tion is running or react in some other "application specific"
manner 6. We believe that a high degree of application
control in deciding about migration and data movement is
key in network aware mobile applications.

The focus of our work has been to make distributed
applications achieve better performance using mobility as
a tool to adapt to resource variations. We have therefore
not as yet addressed the important issues of security and
resource usage containment our implementation.

Application-transparent or system level adaptation to
wide variations in network bandwidth has been used suc-
cessfully by the designers of the CODA file system [18] to
improve the performance of applications.

Several experimental studies have been conducted on
various aspects of Internet performance.

Sanghi et al [5] present studies on round trip time mea-
surements of UDP packets. Their observations show that
round trip times show significant variability with sharp
peaks. If the peaks are ignored, the round trip time shows
a step change behavior. This is consistent with our obser-
vations.

Paxson [21, 22] has experimentally studied the various
aspects of Internet performance. His study on routing con-
cludes that in the Internet, the majority of routes persist
for days. Further, approximately half of the connections
displayed routing asymmetry. Thus the expected delay go-
ing from host A to host B is likely to be different from
the expected delay going from host B to host A. Paxson’s
study concludes that traffic various quantities of interest
such as packet inter arrival time may be explained with a
self similar model.

Golding [9] has investigated methods to predict RTT
measurements and bandwidth using moving averages.
Their work implies that bandwidth estimation using pre-
vious observations alone as a basis for prediction does not
work well.

Carter and Crovella [19] propose a bandwidth probing
scheme to estimate the bandwidth of a connection. They
observe that congestion is usually caused by queuing delays
at a bottleneck link. The base bandwidth of the connection
is estimated by the speed of the bottleneck link. This is
done by sending packets in succession such that there is

6The exception handling facilities of Java come in handy here.

a high probability that they will queue one after the other
at the bottleneck router. The packet inter-arrival time is a
measure of how fast the bottleneck router can process the
packets and hence indicates the base bandwidth. A decision
filtering method is used to eliminate false measurements
caused by various effects such as downstream congestion,
packet loss, competing traffic and queuing failure.

8 Conclusions and future work

This paper is a first step in demonstrating that distributed
programs can use mobility as a tool to adapt to variations in
their operating environment. Our exploration of network-
aware mobile programs lead us to the following conclu-
sions. First, network-aware placement of components of a
distributed application can provide significant performance
gains over a network-oblivious placement. For short term
applications (applications that run for an hour or so) exploit-
ing spatial variations as well as variations in the number
and location of the clients achieves most of the gains. For
longer-running applications, exploiting temporal variations
might be worthwhile. Second, effective mobility decisions
can be based on coarse-grained monitoring. This allows
cheap active monitoring without losing effectiveness. Fi-
nally, there is significant spatial and temporal variation in
Internet latency which can be effectively adapted to by
mobile objects.

We believe that there is a class of long running appli-
cations over the Internet for which resource-aware mobil-
ity could provide flexibility and performance which would
take a lot more effort to achieve by other means. One future
direction we would like to pursue is to identify such appli-
cations and understand their structure and requirements.
Some of the examples we intend to study include resource-
aware pre-fetching for web clients, sequence servers and
multi-database queries over the Internet. Another direction
that we plan to explore is efficient distributed monitoring
of other resources, in particular, network bandwidth and
server availability. We are investigating cheap methods
of estimating network bandwidth. An important question
that we are investigating is how accurate resource estimates
need to be in order to benifit from resource aware mobility
and how the accuracy of estimation affects performance.

Acknowledgements

The authors are grateful to Mustafa Uysal, Manuel Ujal-
don and the anonymous referees for their suggestions.

References

[1] Java object serialization specification.
http://chatsubo.javasoft.com/current/serial/index.html.

[2] A. Birell, G. Nelson, S. Owicki, and E. Wobber. Network
objects. In ACM SIGOPS, pages 217–229, Dec. 1993.

[3] L. Cardelli. A language with distributed scope.
In 22 ��� ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Jan. 1995.
http://www.research.digital.com/SRC/Obliq/Obliq.html.

[4] C. ching Chang. Rexdc - a remote execution mechanism. In
ACM SIGCOMM, pages 106–115, 1989.

[5] D.Sanghi, A.K.Agrawala, O.Gudmundsson, and B.N.Jain.
Experimental assessment of end-to end behavior on inter-
net. Technical Report CS-TR-2909, University of Maryland,
June 1992.

[6] E.Jul, H.Levy, N.Hutchinson, and A.Black. Fine-grained
mobility in the emerald system. ACM Transactions on Com-
puter Systems, 6(2):109–133, Feb. 1988.

[7] E.Zayas. Attacking the process migration bottleneck. In
11th. ACM Symposium on Operating Systems Principles,
pages 13–24, Nov. 1987.

[8] F.Douglis and J.Ousterhout. Process migration in the Sprite
operating system. In 7 ��� International Conference on Dis-
ributed Computing Systems, pages 18–25, Sept. 1987.

[9] R. A. Golding. End-to-end performance prediction for the
internet (work in progress). Technical Report UCSC-CRL-
92-26, University of California at Santa Cruz, June 1992.

[10] J. Gosling and H. McGilton. The Java language environment
white paper, 1995. Available at : http://www.java.sun.com.

[11] H.E.Bal, J.G.Stiener, and A.S.Tanenbaum. Programming
languages for distributed computing. ACM Computing Sur-
veys, 21(3), 1989.

[12] G. M. Inc. Telescript Technology: Mobile Agents. Available
at : http://www.genmagic.com/Telescript/Whitepapers.

[13] G. M. Inc. Telescript Language Language Ref-
erence and Users Guide, 1995. Available at :
http://www.genmagic.com/Telescript/TDE.

[14] D. Johansen, R. van Renesse, and F. B. Schneider. An intro-
duction to the tacoma distributed system version 1.0. Tech-
nical Report 95-23, University of Tromso, 1995. Available
at : http://tklab1.cs.uit.no/DOS/Tacoma/Publications.html.

[15] J.R.Falcone. A programmable interface language for hetero-
geneous systems. ACM Transactions on Computer Systems,
5(4):330–351, Nov. 1987.

[16] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-
grained mobility in the emerald system. In Proceedings of
the Eleventh Symposium on Operating Systems Principles,
Austin, Texas, 1987.

[17] J.W.Stamos and D.K.Glifford. Implementing remote eval-
uation. IEEE Transactions on Software Engineering,
16(7):710–722, July 1990.

[18] L.B.Mummert, M.R.Ebling, and M.Satyanarayanan. Ex-
ploiting Weak Connectivity for Mobile File Access. In
Proceedings of the 15th. A.C.M Symposium on Operating
Systems Principles, Dec. 1995.

[19] R. L.Carter and M. E.Crovella. Dynamic server selection
using bandwidth probing in wide-area networks. Technical
Report BU-CS-96-007, Boston University, 1996.

[20] M. Litzkow and M. Livny. Experiences with the condor dis-
tributed batch system. In IEEE Workshop on Experimental
Distributed Systems, Huntsville, Al., 1990. Available at :
http://www.cs.wisc.edu/condor/ publications.html.

[21] V. Paxson. End-to-end routing behavior in the inter-
net. In ACM SIGCOMM, Aug. 1996. Available at :
http://ftp.ee.lbl.gov/nrg-papers.html.

[22] V. Paxson and S. Floyd. Wide-area traffic: The failure of
posson modeling. IEEE/ACM Transactions on Networking,
3(3):226–244, 1995. Available at : http://ftp.ee.lbl.gov/nrg-
papers.html.

[23] M. Ranganathan, A. Acharya, and J. Saltz. Distributed re-
source monitors for mobile objects. In International Work-
shop on Operating System Support for Object Oriented Sys-
tems, 1996. Available at : http://www.cs.umd.edu/ acha.

[24] R.S.Gray. Agent tcl: A flexible and secure mobile-
agent system. In Proceedings of the Fourth Annual
Tcl/Tk Workshop (TCL 96), July 1996. Available at
:http://www.cs.dartmouth.edu/ agent/papers.html.

[25] S.M.Clamen, L.D.Lebengood, S.M.Nettles, and J.M.Wing.
Reliable distributed computing with avalon/common lisp.
In International Conference on Computer Languages, pages
169–179, New Orleans, LA, 1990.

[26] J. M. Smith. A survey of process migration mechanisms. In
Operating Systems Review, May 1988.

